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Sea cucumber populations around the globe are experiencing marked declines caused by overexploitation and habitat degradation. Fisheries-
independent data used to manage these ecologically and economically important species are frequently collected using diver- or snorkeler-
based surveys, which have a number of limitations, including small spatial coverage and observer biases. In the present study, we explored
how pairing traditional transect surveys with unmanned aerial vehicles (UAVs) and machine learning could improve sea cucumber density es-
timation in shallow environments. In July 2018, we conducted 24 simultaneous snorkeler–UAV transects in Tetiaroa, French Polynesia. All
UAV images were independently reviewed by three observers and a convolution neural network (CNN) model: ResNet50. All three methods
(snorkelers, manual review of UAV images, and ResNet50) produced similar counts, except at relatively high densities (�75 sea cucumber 40
m�2), where UAVs and CNNs began to underestimate. Using a UAV-derived photomosaic of the study site, we simulated potential transect
locations and determined a minimum of five samples were required to reliably estimate densities, while sample variance plateaued after 25
transects. Collectively, these results illustrate UAVs’ ability to survey small invertebrate species, while saving time, money, and labour com-
pared to traditional methods, and highlights their potential to maximize efficiency when designing transect surveys.

Keywords: abundance estimation, convolution neural network, drone, fisheries-independent surveys, Holothuroidea, invertebrates, visual
surveys

Introduction
Sea cucumbers (Holothuroidea) are marine benthic invertebrates

that play an important role in coral reef ecosystems (Purcell et al.,

2014a). Their digestion of organic matter associated with ingested

coral sand and rubble results in the dissolution of acidic CaCO3

particulates and, consequently, increases local alkalinity in reef

environments (Hammond, 1981; Schneider et al., 2013; Purcell

et al., 2016). Importantly, this digestive process may help to

buffer against the effects of increasing ocean acidification

(Schneider et al., 2013). As a digestive by-product, sea cucumbers

also secrete ammonia (NH3) that contributes to nutrient cycling

and encourages productivity in coral systems (Uthicke and

Klumpp, 1998; Uthicke, 2001). Furthermore, sea cucumbers di-

rectly increase oxygen levels in the sediment through bioturbation

(Hammond, 1982). By implication, the presence of sea cucum-

bers may improve reef resilience and stability under future
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anthropogenic stressors (Schneider et al., 2013), and it has been

suggested that their removal can result in diminished ecosystem

functionality (Purcell et al., 2016).

Many species of tropical sea cucumbers are commercially valu-

able (Conand, 1998; Purcell et al., 2014b), with the majority har-

vested to produce bêche-de-mer products for consumption in

Asian markets (Anderson et al., 2011; Eriksson and Clarke, 2015).

Their ease of collection, low recruitment, slow growth, and high

longevity make them particularly vulnerable to overfishing

(Conand, 2001; Uthicke et al., 2004). These factors coupled with

high global demand for sea cucumber products have resulted in

70% of tropical sea cucumber species being listed as exploited,

overexploited, or depleted (Anderson et al., 2011; Purcell et al.,

2014b), with many local populations having already been extir-

pated (Purcell et al., 2014b). To determine optimal harvest levels,

stakeholders must be able to assess the spatio-temporal popula-

tion dynamics from a variety of data sources including fisheries-

independent surveys. To date, the majority of fisheries-

independent surveys used to help sea cucumber management

decisions comes from underwater visual censuses (UVCs), which

provide density estimates over a small area using counts from

SCUBA diver or snorkeler transects (e.g. Shepherd et al., 2003;

Léopold et al., 2013; Rehm et al., 2014; Idreesbabu and

Sureshkumar, 2017). Though important tools, these surveys have

a number of shortcomings, including high costs, errors and bias

due to observer experience, and small spatial coverage (Shepherd

et al., 2003; Prescott et al., 2013). They are also time-consuming

and logistically impractical in many of the shallow sand flat habi-

tats where sea cucumbers are abundant (Mercier et al., 2000;

Idreesbabu and Sureshkumar, 2017). Given the limitations of cur-

rent survey methods and an increasing need for accurate sea cu-

cumber abundance estimates, it is critical to develop tools and

techniques to better monitor these ecologically and economically

important populations.

Unmanned aerial vehicles (UAVs) have rapidly developed over

the last decade and have been increasingly used by ecologists as a

wildlife monitoring tool (Ivo�sevi�c et al., 2015). Their low cost,

ease of use, relatively large spatial coverage, programmable flight

paths, and ability to be deployed in remote locations have enabled

UAVs to be applied to a wide range of studies in both terrestrial

and marine environments (Anderson and Gaston, 2013; Colefax

et al., 2018). The majority of work in marine population moni-

toring has focused on the application of UAVs to replace tradi-

tional manned aerial surveys of large vertebrates such as dugongs

(Hodgson et al., 2013), cetaceans (Christiansen et al., 2016), sea

turtles (Rees et al., 2018), and elasmobranchs (Kiszka et al.,

2016). More recently, UAVs have been used to examine aspects of

species behaviour (Rieucau et al., 2018) and to quantify changes

in coral health (Parsons et al., 2018). An as of yet unexplored po-

tential application of UAVs is their ability to provide density esti-

mates for shallow water invertebrate species, for which remote

underwater vehicles or diver transects may be impracticable.

In this study, we evaluated the efficacy of UAVs as a means to

supplement current data collection efforts for sea cucumbers in

shallow water environments as well as their potential to overcome

many issues associated with traditional diver-based surveys.

Specifically, our objectives were to compare estimated counts and

the time required to extract counts for sea cucumber transects us-

ing (i) in situ snorkeler observations, (ii) UAV data manually gen-

erated by observers, and (iii) UAV data generated using machine

learning. Additionally, we explored how UAVs may be used to

improve survey design and quantify required survey effort for

diver or snorkeler transects.

Methods
Data collection
We conducted sea cucumber transect surveys over shallow

(<2 m) sandflats of Tetiaroa, French Polynesia, a small atoll in

the Society Archipelago (Figure 1) from 22 July 2018 to 24 July

2018. In total, 24 paired snorkeler transects were conducted, with

a random starting and heading selected for each. Prior to sam-

pling, each survey location was verified using a Garmin eTrex 39x

hand held Global Positioning System. Each transect covered a 4

m � 10 m area and occurred between 08:00 and 16:00 local time.

Surveys were not restricted due to cloud coverage, wind speed, or

the observed turbidity of the water. However, conditions were

generally sunny with low turbidity due to wind. To aid in ob-

server counts (i.e. reduce double counting), each transect was

subdivided into 1 m � 10 m areas by connecting two grey 1-m

PVC tubes covered in red electrical tape using weighted 1=400 black

line, each at 10 m in length (Figure 2). Once the observers had

deployed the transect grid, depth at both the starting and the end

points of each transect was measured using a weighted Komelon

6622 open reel measuring tape. Following these measurements,

observers waited until all sediment had settled before beginning

transect surveys (60 s). Transects were conducted one at a time by

two independent snorkelers, with all sea cucumbers seen by the

observer recorded and aggregated across species, and times

Figure 1. All UAV transects for this study were flown in sandflat
habitats of Tetiaroa, French Polynesia of <2 m in depth, from 22 July
2018 to 24 July 2018. Lower inset depicts nearby islands of the
Society Archipelago; Tahiti and Moorea. Upper inset highlights
northern region of lagoon where UAV transects were flown.
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required to complete each transect recorded in seconds. Once

snorkelers completed their transects and cleared the area, each lo-

cation was then surveyed using a DJI Mavic Air (168 mm � 83

mm � 49 mm; 430 g) with a 35 mm lens (85� field of view; 1/2.300

COMS Sensor; 12 mega pixels) equipped with a polarizing lens to

reduce issues with sun glare. The UAV was flown directly over

the centre of the transect grid at an altitude of 7 m above sea level,

and all videos were shot in 4k resolution (3840 � 2160) at 30

frames per second.

Manual review of UAV data
Counts from snorkelers were recorded in situ, whereas UAV video

transects required additional steps to enumerate sea cucumbers.

For each transect, a single image was selected from the video foot-

age to be reviewed, using the ImageMagick package (version 6).

Each image was then independently reviewed by two trained

observers using the application Visual Counter (version 1.2;

iVanyaTM 2015), with total time in seconds recorded for each ob-

server to process an image. Visual Counter allowed observers to

click on sea cucumbers present on an image and provided a total

count of marked objects, relieving observers from self-tracking

raw counts (Figure 2). After manual annotations of the sea

cucumbers were completed by both observers, each pair of anno-

tated images were compared to one another to by a third

independent observer who provided the final count. To assist the

third observer in comparing these two images, areas marked by

both initial observers were converted to yellow, whereas areas of

discrepancy (i.e. sea cucumbers marked by one observer but not

the other) were converted to red. This colorization process was

accomplished in MATLAB, by expanding the annotated pixel

areas (to account for the same sea cucumber being marked in

slightly different locations) and isolating marked pixels in the

Commission Internationale de l’Eclairage (CIE) L*a*b colour

space.

Automated UAV data review
To automate the process of identifying and enumerating sea

cucumbers from UAV data, we elected to use ResNet50: a 50-

layer convolution neural network (CNN) that supports residual

learning (He et al., 2016). CNNs are widely used for image classi-

fication and function by transforming an input image through a

specified number of hidden layers. Each layer type serves a differ-

ent function in the network, from feature extraction (convolu-

tion), to dimensionality reduction (pooling), and final feature

aggregation (fully connected). ResNet50 was developed and

trained using ImageNet: a large database of over 14 million anno-

tated images (Russakovsky et al., 2015). Using the pretrained

ResNet50 architecture, we constructed a faster RCNN object de-

tector for sea cucumbers. To train the faster RCNN detector, we

used 72 augmented images taken from our UAV transects

(flipped vertically, horizontally, and both). Each image was anno-

tated for five separate classifiers as follows: small sea cucumbers,

large sea cucumbers, rocks, detritus, and transect lines. Once

trained, image classifiers were then used to predict the number of

sea cucumbers present on the original (un-augmented) UAV

transect images. Several different minimum validation criteria

(MVC) were tested, defined as the minimum acceptable probabil-

ity that an object is a sea cucumber for it to be counted as such

(25, 50, 70, and 90%). For each MVC, we recorded the resulting

F1 score (which strikes a balance between evaluating model preci-

sion and model recall) and selected MVC with the highest F1

value to be used for comparisons between snorkelers and UAV

data generated using human observers.

Comparing count estimates
Counts generated from manually reviewing UAV images and

from ResNet50 were compared to the maximum snorkeler count

for each transect. The maximum snorkeler count was assumed to

represent the most accurate sea cucumber count for each transect,

as it is more likely for an observer to have a false negative (i.e. not

see a sea cucumber) than a false positive (i.e. count a sea cucum-

ber when it is not present; Andrew and Mapstone, 1987). Using

this approach, we were able to compare the relative accuracy of

each method to this standard. Counts of each method were com-

pared to the maximum snorkeler count both visually and by us-

ing a Spearman’s correlation test to measure the strength of the

linear relationship between these paired data. The bias and per-

cent bias of each method was also calculated for each transect,

with the maximum snorkeler count again representing our stan-

dard for comparison. The minimum snorkeler counts were also

included in these visual comparisons. It should be noted that

these counts are inherently negatively biased compared to maxi-

mum snorkelers counts but were included to show how the dis-

crepancy between snorkelers compares to counts derived from

Figure 2. Example images of UAV data flown over snorkeler
transects used in Tetiaroa, French Polynesia. Snorkeler transects are
highlighted by weighted PVC and connected lines to ease
comparison between divers and UAV. (a) Image after being
processed by observers using Visual Counter software. Sea
cucumbers identified by the observer 1 are represented by small
purple squares, whereas observer 2 markings are indicated in blue.
(b) Image of sea cucumber counts processed by two independent
observers, with areas of agreement (represented by small orange
squares) and disagreement (represented by small red squares)
identified using MATLAB colour channel filtering in the L*a*b colour
space.
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UAVs and from ResNet50. To determine if snorkelers or manual

review of UAV data had significantly different time requirements,

we used a Wilcoxon-signed rank test comparing the sum of the

individual times of each observer for any one transect. All data

were analysed in the R core environment (R Core Team, 2018),

with significance accepted at a p value of �0.05.

UAVs to improve survey designs
Using the application Pix4DCapture (Version 4.6.0), we created a

photomosaic of the entire study region from a series of 57 over-

lapping, geo-referenced images. The mosaic was then manually

reviewed by a single observer using Visual Counter in the same

manner as described for the manual review of UAV data, whereby

all observed sea cucumbers were marked with a small, coloured

square (e.g. blue). The XY coordinates of these marker positions

were then extracted via the same colour channel filtering in CIE

L*a*b colourspace as previously described. We then randomly se-

lected a 4 m � 10 m representative section of the mosaic and pro-

vided the total number of marked sea cucumbers in this area.

This procedure was then replicated for 2–100 simulated transects

at a time and was then repeated 1000 times. Using these simu-

lated samples, we then explored how total sample variance

changed in relation to the simulated number of transects (1–100).

Results
The maximum sea cucumber count obtained by either snorkeler

for each transect varied widely (range¼ 0–111), with a mean of

53.67 (637.49; 6SD). Similar counts were generated by manually

reviewing UAV data (48.21 6 31.69), but ResNet50 tended to

have lower estimates (33.21 6 25.07). An MVC of 50% was se-

lected as the best for ResNet50 (F1¼ 0.81; see Supplementary

Material for other MVC F1 scores), which had a 71.95% true pos-

itive detection rate (model recall) and a positive predictive value

of 93.15% (model precision). Counts among snorkelers were rela-

tively precise, averaging a difference of only 2.25 (66.0) with a

maximum difference of 11 and appeared greatest at higher densi-

ties. Counts among UAV reviewers were also relatively precise,

though less so than snorkelers, with a mean difference of

9.71(67.10).

Counts generating by manually reviewing UAV images tended

to be negatively biased compared to the maximum snorkeler

count, with a �5.81% median bias (624.50; Figure 3b). This

negative bias appeared minimal until transect densities reached

90 sea cucumbers and was similar to the bias of the minimum

snorkeler count (�4.91% 6 20.40; Figure 3a). Counts generated

by ResNet50 had a greater negative bias overall (�28.10% 6

135.90). Similar to manually reviewing UAV image, the negative

bias of ResNet50 was inversely related to transect density

(Figure 3a). The correlation between the maximum snorkeler

counts and those generated by manually reviewing UAV images

were highly significant (p< 0.001; q¼ 0.95), as were counts gen-

erated using ResNet50 (p< 0.001; q¼ 0.70).

Processing times for UAV images that were manually reviewed

showed high variability from one image to another (range¼ 144–

760 s), averaging 380.6 s (6156.10 s). The amount of time re-

quired to process any one image was strongly related to the num-

ber of sea cucumbers estimated to be present, but did not appear

to be influenced by transect depth. Processing times required by

snorkelers for each transect were significantly shorter than those

by UAV review (V¼ 274, p< 0.01), with an average time required

of 275.5 s (6238.40). However, times also varied greatly between

transects for snorkelers (range¼ 92–456) and had a mean differ-

ence of <2 min compared to manual review of UAV images.

Pix4D proved capable of generating a photomosaic of the en-

tire surveyed area (Figure 4). Furthermore, it was possible for

observers to manually annotate sea cucumbers within these

images using Visual Counter (Figure 4). Visual inspection of sim-

ulation results indicated that sample variance dramatically de-

clined once sample size reached at least five transects, but that

decreases in variance began to plateau at 25 transects for our sur-

veyed area (Figure 5).

Discussion
In the present study, we have demonstrated how UAVs may be

used in a new realm of marine research by highlighting their abil-

ity to survey invertebrate species, such as sea cucumbers, in shal-

low environments. Importantly, counts of sea cucumbers

estimated using UAVs were similar to those obtained by snorkel-

ers in the field. Although counts among UAV observers were rela-

tively precise, they had greater variability than among snorkelers,

highlighting the importance of using a third UAV reviewer to

identify areas of agreement and disagreement between initial

observations. In this regard, UAVs may have a distinct advantage

over snorkelers or divers, as counts obtained can be archived and

Figure 3. (a) Bias of the minimum snorkeler counts (red circles), images manually reviewed from UAV data (blue squares), and ResNet50
(green triangles) compared to the maximum snorkeler count for each transect (standardized to a value of zero, horizontal dashed line). (b)
Density plot of the percent bias for each count method (same colour coding as panel a). Colour text corresponds to the median percent bias
estimate for each method using on the same colour coding.
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later reviewed by a number of experts until a consensus on the

appropriate count is agreed upon. Furthermore, by individually

marking sea cucumbers in images rather than aggregating counts

across a transect (as is done with snorkelers and divers), research-

ers may be able to more accurately quantify survey detection

probabilities and underlying factors that drive observer biases.

Though UAV counts were similar to snorkelers overall, it is

important to note that this relationship did not hold under high-

density conditions (i.e. >90 sea cucumbers). While the majority

(79%) of sampled transects were below the 90 sea cucumbers 40

m�2 density threshold, this could still be cause for concern as it

may result in a hyperstable index of relative abundance if not

accounted for, whereby populations may be changing while indi-

ces remain stable (Hilborn and Walters, 1992). Fisheries-

independent surveys frequently exhibit this type of density-

dependent gear-efficiency, often referred to as “gear saturation”

(Rago, 2005), including other visual survey methods (e.g.

Campbell et al., 2015; Kilfoil et al., 2017). However, once

detected, density-dependent gear efficiency can often be corrected

for either statistically or through technological innovations and

gear modifications (e.g. Kilfoil et al., 2017). Although the exact

reasons for underestimation of sea cucumbers at higher densities

are unknown, it is possibly driven by sea cucumbers clustering

under coral overhangs or on small coral heads, which makes

counting using UAVs extremely difficult. Furthermore, the pre-

sent study was conducted in an area well suited for surveying sea

cucumbers using UAVs (e.g. contrasting colours of sea cucum-

bers on sandflats, relatively shallow water) and during favourable

weather conditions (e.g. low wind, low surface turbidity).

Accordingly, future research efforts should be conducted to ex-

amine the utility of UAVs across a gradient of depths, weather

conditions, habitat types, and species of interest.

In addition to the relative accuracy of a method, researchers

must consider the relative effort required to conduct a survey due

to time and budgetary constraints. Although the time required to

manually extract counts was higher for UAVs than for snorkelers,

this extra time requirement could be allocated to periods when

researchers are unable to be in the field (e.g. at night or during

unfavourable weather conditions). Moreover, the additional time

required to extract counts from images was driven by the in-

creased number of observers (three) compared to snorkelers

(two) and represents a relatively small increase in effort, particu-

larly when considering other time constraints that we did not ad-

dress in this study (e.g. time spent deploying and retrieving

transects, time moving between site locations). This is in contrast

to many other video survey platforms that are often rendered

unusable for resource managers because of the elapsed time be-

tween collecting and extracting data (Harvey et al., 2013).

Furthermore, we were able to demonstrate that using CNNs, it

may be possible to fully automate the process of extracting counts

from UAV data, which could further reduce time requirements.

Our results indicate that using CNNs, such as ResNet50, can

enable researchers to automate the process of identifying and

counting sea cucumbers from UAV images. However, counts gen-

erated from ResNet50 did tend to be lower than those provided

by manual reviews of these same images, particularly when many

sea cucumbers were present. There are a number of factors that

may have contributed to this lower than desired detection capa-

bility, but it was most likely driven by the small size of the dataset

used to train the model. Numerous studies have shown that one

of the most important factors for improving CNN model perfor-

mance is to increase the size of the training dataset (Ozbulk et al.,

2016; Windrim et al., 2016). As UAVs become more frequently

used for this type of research, the amount of data available to de-

velop these models will likely increase exponentially. Until that

time, CNNs may be more suited as a “first pass” estimate, which

can then be reviewed and corrected by human observers.

When considering the potential of CNNs to automatically enu-

merate sea cucumbers from image data, coupled with the rela-

tively low cost of UAVs (�1000 USD) and their ability to be

Figure 4. Photomosaic map of study region in Tetiaroa, French
Polynesia generated by stitching 57 overlapping, geo-referenced
images using the application Pix4DCapture. Inset highlights a
zoomed in portion of image with sea cucumbers manually marked
using Visual Counter.

Figure 5. Sample variance from simulated transects (1–100) in
relation to the number of transects sampled, based on sea cucumber
locations taken from UAV generated photomosaic of the study
region in Tetiaroa, French Polynesia. A total of 1000 simulations
were run for each number of simulated transects sampled.
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deployed in remote regions, UAVs become an obvious choice to

supplement current UVC techniques as a research tool and may

even facilitate the gathering of data where none currently exist.

Though exact protocols for using UAVs will vary depending on

laws and regulations of the site country (e.g. flying from higher

altitudes and using zoom lenses to minimize interactions with

humans and wildlife), these data would nonetheless improve our

ability to monitor sea cucumber populations and could poten-

tially be integrated using statistical approaches. The utility of

UAVs may be particularly high in areas where UVCs are too ex-

pensive or logistically unrealistic to be implemented. Given the

increasing popularity of UAVs in the public sector, it is also feasi-

ble that UAVs could be a source of large-scale citizen science data

in the future. Though identifying sea cucumbers and other inver-

tebrates from UAV data requires extensive training, it would be

relatively simple to establish a repository where citizen scientists

could contribute UAV images to be later reviewed by scientist, or

ideally by machine learning methods such as CNNs. Similar citi-

zen scientist image databases already exist, such as eBird (https://

ebird.org/home), eMammal (https://emammal.si.edu), and Reef

Vision (https://recfishwest.org.au/our-services/research/reef-vi

sion-artificial-reef-monitoring/).

Importantly, our results build on previous work (e.g. Shepherd

et al., 2003) to indicate that sea cucumbers do not distribute uni-

formly or randomly throughout their environment, but instead

cluster in groups. Therefore, UAVs may be particularly well suited

to study these populations because they can cover a much larger

area in a shorter time frame than is typical of UVCs. By mapping

the study region ahead of deploying divers or snorkelers,

researchers may be able to quantify the general spatial distribu-

tion of their target species and potentially identify what physical

characteristics of the environment may be driving these observed

distributions (e.g. distance to coral, tidal state). Furthermore, us-

ing photomosaic mapping could enable researchers to determine

what survey effort is required to accurately and precisely estimate

species densities. In the present study, we demonstrated how this

technique could be used to determine the number of samples re-

quired to reliably estimate sea cucumber density within a study

site. Using this same approach, researchers could determine at

what spatial scales their samples become independent or how dif-

ferent sampling designs (random, stratified-random, systematic,

or adaptive) and chosen transect sizes (i.e. better to have many

small transects or fewer large transect) may impact their resulting

count estimates prior to beginning their sampling efforts. This

application of UAVs may be especially beneficial to researchers,

as it would allow for the optimization of survey designs, provide

justifications for the amount of survey effort required, and iden-

tify/designate areas for research priorities, all of which are in-

creasingly important in the face of budgetary and personnel

shortages. Furthermore, given the potential limitations of UAVs

to identify sea cucumbers to the species level, coupled with depth

restrictions of the technique, UAVs may be best served as a tool

for improving diver and snorkeler transects until these limitations

can be addressed.

As UAVs continue to advance and drop in price, they will un-

doubtedly be used increasingly by researchers and conservation

managers. Here we have presented how this innovative technol-

ogy can be used in the marine environment to enumerate inverte-

brates such as sea cucumbers. Given the ecological importance of

sea cucumbers (particularly in the face of increasing ocean acidifi-

cation due to climate change) as well as their massive global

economic importance, it is imperative that we have reliable

fisheries-independent data to help inform fisheries management

as well as potential conservation measures. This data need is

made all the more crucial by the fact that many sea cucumber

species are undergoing dramatic declines in the face of overex-

ploitation and other anthropogenic stressors (Purcell et al.,

2014a). Although UVCs such as diver and snorkeler transects will

continue to play an important role in quantifying marine inverte-

brate communities, the reliability and numerous advantages of

UAV surveys demonstrated in this study highlight their likely fu-

ture role in describing spatio-temporal changes to populations in

coral reef environments.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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